## LETTER TO THE EDITOR

## MTHFR 677TT genotype and toxicity of methotrexate: controversial results

Elixabet Lopez-Lopez · Javier Ballesteros · Africa Garcia-Orad

Received: 10 June 2011 / Accepted: 20 July 2011 / Published online: 6 August 2011 © Springer-Verlag 2011

## Dear Editor,

We have read with interest the contribution by D'Angelo et al. [1] regarding the study entitled "Methotrexate toxicity and efficacy during the consolidation in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants".

In this study, the authors described that when global toxicity and MTHFR C677T genotypes in the two MTX treatment groups (2 g/m<sup>2</sup> vs. 5 g/m<sup>2</sup>) were analysed, the toxicity risk was significantly more common among homozygotes for 677TT. In more detail, they stated that among the patients treated with MTX 2 g, the 677TT genotype had a

12-fold higher risk of developing toxicity than patients with other genotypes (OR = 12.2; 95% CI; 2.54–58.9; p = 0.001). However, when we reanalysed the data provided by the authors in Tables 2 and 3 of their article, our conclusions differ from those of the authors.

Our reanalysis with the odds ratios (OR) of the associations from univariate logistic regressions is presented in Table 1. Contrary to what was stated by the authors, we did not find a significant association (p < 0.05) of the MTHFR 677TT genotype with increase in toxicity. In fact, we observed that the 677TT genotype was significantly associated with a decreased risk of global toxicity within the group of patients treated with MTX 5 g (OR = 0.17; 95% CI: 0.04–0.67).

Therefore, we conclude that in the study by D'Angelo et al., there is no correlation between the 677TT genotype and increased toxicity and that the small effect of the polymorphism would be protective.

These results are in concordance with the reports by other authors that do not find a correlation between the MTHFR 677T variant and toxicity [2–12] or that even found a small protective effect for this polymorphism [13–15].

The implication of MTHFR C677T polymorphism in paediatric ALL patients treated with MTX is a subject which has generated a great controversy in the past. Lately, the evidences provided by most studies support the idea that MTHFR C677T is not a good predictor of MTX toxicity for children with ALL [2–15].

Conflict of interest None.

E. Lopez-Lopez · A. Garcia-Orad (⋈)
Department of Genetics, Physic Anthropology
and Animal Physiology, Faculty of Medicine and Dentistry,
University of the Basque Country,
Barrio Sarriena s/n, 48940 Leioa, Spain
e-mail: africa.garciaorad@ehu.es

J. Ballesteros Department of Neurosciences, University of the Basque Country, Leioa, Spain

Table 1 Methot and MTHFR C67 polymorphism

| Table 1 Methotrexate toxicity and MTHFR C677T polymorphism |                             | MTHFR<br>C677T | r/N   | OR (95% CI)          | p value |
|------------------------------------------------------------|-----------------------------|----------------|-------|----------------------|---------|
|                                                            | MTX 2 g                     |                |       |                      |         |
|                                                            | Global toxicity             | CC             | 14/21 | Reference            |         |
|                                                            |                             | CT             | 22/38 | 0.69 (0.23 to 2.09)  | 0.509   |
|                                                            |                             | TT             | 14/19 | 1.40 (0.36 to 5.49)  | 0.629   |
|                                                            | Haematological toxicity     | CC             | 8/21  | Reference            |         |
|                                                            |                             | CT             | 10/38 | 0.58 (0.19 to 1.81)  | 0.349   |
|                                                            |                             | TT             | 3/19  | 0.30 (0.07 to 1.39)  | 0.124   |
|                                                            | Non-haematological toxicity | CC             | 6/21  | Reference            |         |
|                                                            |                             | CT             | 12/38 | 1.15 (0.36 to 3.71)  | 0.810   |
|                                                            |                             | TT             | 11/19 | 3.44 (0.92 to 12.79) | 0.065   |
|                                                            | MTX 5 g                     |                |       |                      |         |
|                                                            | Global toxicity             | CC             | 20/27 | Reference            |         |
|                                                            |                             | CT             | 29/33 | 2.54 (0.65 to 9.83)  | 0.178   |
|                                                            |                             | TT             | 4/13  | 0.16 (0.04 to 0.67)  | 0.012*  |
|                                                            | Haematological toxicity     | CC             | 9/27  | Reference            |         |
|                                                            |                             | CT             | 13/33 | 1.30 (0.45 to 3.76)  | 0.628   |
|                                                            |                             | TT             | 1/13  | 0.17 (0.02 to 1.49)  | 0.109   |
| * <i>p</i> < 0.05                                          | Non-haematological toxicity | CC             | 11/27 | Reference            |         |
| r number of subjects                                       |                             | CT             | 16/33 | 1.37 (0.49 to 3.82)  | 0.549   |
| presenting toxicity, <i>N</i> total number of subjects     |                             | TT             | 3/13  | 0.44 (0.10 to 1.96)  | 0.279   |

## References

- 1. D'Angelo V, Ramaglia M, Ianotta A, Crisci S et al (2011) Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol. doi:10.1007/s00280-011-1665-1 (Published on line on 18 May 2011)
- 2. Shimasaki N, Mori T, Samejima H, Sato R et al (2006) Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 28(2):64-68
- 3. Horinouchi M, Yagi M, Imanishi H, Mori T et al (2010) Association of genetic polymorphisms with hepatotoxicity in patients with childhood acute lymphoblastic leukemia or lymphoma. Pediatr Hematol Oncol 27(5):344-354
- 4. Karathanasis NV, Stiakaki E, Goulielmos GN, Kalmanti M (2011) The role of the methylenetetrahydrofolate reductase 677 and 1298 polymorphisms in cretan children with acute lymphoblastic leukemia. Genet Test Mol Biomarkers 15(1-2):5-10
- 5. Chatzidakis K, Goulas A, Athanassiadou-Piperopoulou F, Fidani L et al (2006) Methylenetetrahydrofolate reductase C677T polymorphism: association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in greek patients. Pediatr Blood Cancer 47(2):147-151
- 6. Kishi S, Griener J, Cheng C, Das S et al (2003) Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol 21(16):3084-3091
- 7. Pakakasama S, Kanchanakamhaeng K, Kajanachumpol S, Udomsubpayakul U et al (2007) Genetic polymorphisms of folate metabolic enzymes and toxicities of high dose methotrexate in children with acute lymphoblastic leukemia. Ann Hematol 86(8):609-611

- 8. Huang L, Tissing WJ, de Jonge R, van Zelst BD et al (2008) Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia 22(9):1798-1800
- 9. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Piñan MA et al (2011) Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. doi:10.1002/pbc.23074. (Published on line on 8 Mar 2011)
- 10. Kishi S, Cheng C, French D, Pei D et al (2007) Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 109(10):4151-
- 11. Krajinovic M, Lemieux-Blanchard E, Chiasson S, Primeau M et al (2004) Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 4(1):66-72
- 12. Aplenc R, Thompson J, Han P, La M et al (2005) Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res 65(6):2482-2487
- 13. Kantar M, Kosova B, Cetingul N, Gumus S et al (2009) Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 50(6):912-917
- 14. van Kooten Niekerk PB, Schmiegelow K, Schroeder H (2008) Influence of methylene tetrahydrofolate reductase polymorphisms and coadministration of antimetabolites on toxicity after high dose methotrexate. Eur J Haematol 81(5):391-398
- 15. Costea I, Moghrabi A, Laverdiere C, Graziani A et al (2006) Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologica 91(8):1113-1116

